Construction of an Excellent 7 mRNAsi-Related Gene Model Based on Cancer Stem Cells for Predicting Survival Outcome of Cervical Cancer

Author:

Liu Yang1,Yang Lin2,Liang Hao1,Zeng Jianhua1,Hua Yuanyuan1ORCID,Wu Huan1ORCID

Affiliation:

1. Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China

2. Department of Gynecology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400042, China

Abstract

Background. Cervical cancer (CC) is one of the most frequent female malignancy. Cancer stem cells (CSCs) positively affect survival outcomes in cancer patients, but in cervical cancer, the mechanism of tumor stem cells is still uncertain. Methods. RNA-seq data and related clinical follow-up of patients suffering from CC were from TCGA. Consensus clustering screened prognostic mRNAsi-related genes and identified molecular subtypes for CC. Based on the overlapping differentially expressed genes (DEGs) in subtypes, we employed LASSO and multivariate Cox regression to screen prognostic-related genes and established the RiskScore system. The patients were grouped by RiskScore, the prognosis was analyzed by the Kaplan-Meier (K-M) curve among the various groups, and the precision of the RiskScore was assessed by the ROC curve. Finally, the potential worth of RiskScore in immunotherapy/chemotherapy response was assessed by evaluating TIDE scores and chemotherapy drug IC 50 values. Results. We noticed that patients with low mRNAsi had a shorter survival and then identified three molecular subtypes (C1-3), with the C1 having the worst prognosis and the lowest mRNAsi. Finally, we identified 7 prognostic-related genes (SPRY4, PPP1R14A, MT1A, DES, SEZ6L2, SLC22A3, and CXCL8) via LASSO and Cox regression analysis. We established a 7-gene model defined RiskScore to predict the prognosis of CC patients. K-M curve indicated that low RiskScore patients had improved prognosis, and ROC curves indicated that RiskScore could precisely direct the prognostic evaluation for those suffering from the cancer. This was also confirmed in the GSE44001 and GSE52903 external cohorts. Patients were more sensitive to immunotherapy if with low RiskScore, and RiskScore exhibited precise assessment ability in predicting response to immunological therapy in CC patients. Conclusion. CC stemness is associated with patient prognosis, and the RiskScore constructed based on stemness characteristics is an independent prognostic index, which is expected to be a guide for immunotherapy, providing a new idea for CC clinical practice.

Funder

Natural Science Foundation of Chongqing

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3