On Computation and Analysis of Topological Index-Based Invariants for Complex Coronoid Systems

Author:

Rashid Muhammad Aamer1ORCID,Ahmad Sarfraz1ORCID,Siddiqui Muhammad Kamran1ORCID,Kaabar Mohammed K. A.234ORCID

Affiliation:

1. Department of Mathematics, COMSATS University Islamabad,, Lahore Campus, Lahore 54000, Pakistan

2. Gofa Campus, Near Gofa Industrial College and German Adebabay, Nifas Silk-Lafto, 26649, Addis Ababa, Ethiopia

3. Jabalia Campus, United Nations Relief and Works Agency (UNRWA) Palestinian Refugee Camp, Gaza Strip Jabalya, State of Palestine

4. Institute of Mathematical Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia

Abstract

In chemical graph theory, benzenoid systems are interrogated as they exhibit the chemical compounds known as benzenoid hydrocarbons. Benzenoid schemes are circumscribed as planar connected finite graphs having no cut vertices wherein the entire internal sections are collaboratively congruent regular hexagon. The past couple of decennium has acknowledged an extravagant development regarding implementation of information theoretic framework in miscellaneous ramification of science, for instance, in social sciences, biological, physical, and engineering. Explicitly, this tremendous improvement has been outstanding in the field of soft computing, molecular biology, and information technology. The information theory, delineated by Claud Shannon, has no less importance when it was considered. Shannon put forwarded the apprehension of entropy to enumerate upper bounds in transmission rates in telephonic channels, in optical communication, and in wireless. The prestigious feature of entropy is that it entitles the amount of uncertainty in a system. The substantial participation of this paper is to explore characteristics of graph entropies and then keep moving forward to talk about the formation of coronoid polycyclic aromatic hydrocarbons. Likewise, we estimate entropies through precise topological indices established on degree of terminal nodes.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3