Music Waveform Analysis Based on SOM Neural Network and Big Data

Author:

Zhang Xinmei1ORCID

Affiliation:

1. School of Music, Shaanxi Normal University, Xi’an, Shaanxi 710119, China

Abstract

Music is an indispensable part of our life and study and is one of the most important forms of multimedia applications. With the development of deep learning and neural network in recent years, how to use cutting-edge technology to study and apply music has become a research hotspot. Music waveform is not only the main form of music frequency but also the basis of music feature extraction. This paper first designs a method of note extraction based on the fast Fourier transform principle of the audio signal packet route under the self-organizing map (SOM neural network) which can accurately extract the musical features of the note, such as amplitude, loudness, period, and so on. Secondly, the audio segments are divided into summary by adding window moving matching method, and the music features such as amplitude, loudness, and period of each bar are obtained according to the performance of audio signal in each bar. Finally, according to the similarity of the audio music theory of the adjacent summary of each bar, the audio segments are divided, and the music features of each segment are obtained. The traditional recurrent neural network (RNN) is improved, and the SOM neural network is used to recognize the audio emotion features. The final experimental results show that the proposed method based on SOM neural network and big data can effectively extract and analyze music waveform features. Compared with previous studies, this paper creatively proposed a new algorithm, which can more accurately and quickly extract and analyze the data sound waveform, and used SOM neural network to analyze the emotion model contained in music for the first time.

Funder

Shaanxi Normal University

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference25 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3