Modified Least Trimmed Quantile Regression to Overcome Effects of Leverage Points

Author:

Midi Habshah1ORCID,Alshaybawee Taha12,Alguraibawi Mohammed3

Affiliation:

1. Faculty of Science and Institute for Mathematical Research, Universiti Putra, Malaysia 43400 UPM, Serdang Selangor, Malaysia

2. Department of Statistics, College of Administration and Economics, University of Al-Qadisiyah, Al Diwaniyah, Iraq

3. Technical Institute of Dewaniya, Al-Furat Al-Awsat Technical University, Al-Qadisiyah, Al Diwaniyah, Iraq

Abstract

Quantile regression estimates are robust for outliers in y direction but are sensitive to leverage points. The least trimmed quantile regression (LTQReg) method is put forward to overcome the effect of leverage points. The LTQReg method trims higher residuals based on trimming percentage specified by the data. However, leverage points do not always produce high residuals, and hence, the trimming percentage should be specified based on the ratio of contamination, not determined by a researcher. In this paper, we propose a modified least trimmed quantile regression method based on reweighted least trimmed squares. Robust Mahalanobis’ distance and GM6 weights based on Gervini and Yohai’s (2003) cutoff points are employed to determine the trimming percentage and to detect leverage points. A simulation study and real data are considered to investigate the performance of our proposed methods.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3