Age-Period-Cohort Analysis of Type 2 Diabetes Mortality Attributable to Particulate Matter Pollution in China and the U.S.

Author:

Liu Xiaoxue1ORCID,Zhou Maigeng2,Yu Chuanhua1ORCID,Zhang Zhi-Jiang1ORCID

Affiliation:

1. Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, China

2. National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Nanwei Road 27, Xicheng District, Beijing 100050, China

Abstract

Aim. We aimed to assess and compare secular trends in type 2 diabetes mortality attributable to particulate matter pollution in China and U.S. Methods. We performed an age-period-cohort (APC) analysis to estimate the independent effects of age, period, and cohort on mortality of type 2 diabetes attributable to particulate matter pollution. We collected age-standardized and age-specific mortality rates (1990-2017) from the Global Burden of Disease 2017 Study for China and the U.S. Results. During the period 1990-2017, the age-standardized mortality rates of type 2 diabetes attributable to particulate matter pollution in China showed a general increasing trend, while that in U.S. showed an increase before 2002 and subsequently a decrease. The age effect increased markedly in China compared with the U.S. The period effect showed a substantially increase in China while that in the U.S. increased during 1990-2007 and tended to be stable during 2007-2017. The cohort effect peaked in birth cohort born in 1902–1906 in both China and U.S. and declined consistently in the cohort born in 1992-1996. Conclusions. The age-standardized mortality rates of type 2 diabetes attributable to particulate matter pollution, the age, and period effect in China have been increasing in both sexes from 1990 to 2017. The overall mortality in the U.S. began to decrease since 2003, and the period effect showed a tendency to stabilize. Consequently, it is necessary to educate the nation with the correct knowledge and adopting policies on pollutant emission and techniques to reduce air pollution in China.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3