Evaluation of Binding of Rosmarinic Acid with Human Transferrin and Its Impact on the Protein Structure: Targeting Polyphenolic Acid-Induced Protection of Neurodegenerative Disorders

Author:

Shamsi Anas1ORCID,Anwar Saleha1,Shahbaaz Mohd23,Mohammad Taj1ORCID,Alajmi Mohamed F.4ORCID,Hussain Afzal4,Hassan Imtaiyaz1ORCID,Ahmad Faizan1,Islam Asimul1ORCID

Affiliation:

1. Centre for Interdisciplinary Research in Basic Sciences, New Delhi, India

2. South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa

3. Laboratory of Computational Modeling of Drugs, South Ural State University, 76 Lenin Prospekt, Chelyabinsk, 454080, Russia

4. Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

Rosmarinic acid (RA) is a natural compound that is gaining wide popularity owing to its broad-spectrum biological activities. RA is known for its wide range of medicinal properties and therapeutic applications in a vast range of neurodegenerative disorders thus making it a vital natural compound. Human transferrin (hTf) is a clinically significant protein that plays a pivotal role in maintaining iron homeostasis. The importance of studies pertaining to hTf is attributable to the pivotal role of iron deposition in CNS in neurodegenerative disorders. The study was intended to have an insight into the interaction between RA and hTf employing multispectroscopic approach, molecular docking, and molecular dynamic simulation studies. Fluorescence quenching studies revealed that RA shows an excellent binding affinity to hTf with a binding constant ( K ) of 107 M-1 and is guided by static mode of quenching. Isothermal titration calorimetry (ITC) further validated the spontaneous nature of binding. The estimation of enthalpy change (∆H) and entropy change (∆S) suggested that the RA-hTf complex formation is driven by hydrogen bonding, thereby making this process seemingly specific. Further, Fourier transform infrared (FTIR) and circular dichroism (CD) spectra suggested that RA induces conformational and structural changes in hTf. Additionally, molecular dynamics (MD) studies were carried out to investigate the stability of the hTf and hTf–RA system and suggested that binding of RA induces structural alteration in hTf with free hTf being more stable. This study provides a rationale to use RA in drug development against neurodegenerative disorders by designing novel functional foods containing RA.

Funder

King Saud 483 University

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3