Automatic Radiographic Position Recognition from Image Frequency and Intensity

Author:

Ren Ning-ning12,Ma An-ran12,Han Li-bo12,Sun Yong1,Shao Yan13,Qiu Jian-feng1ORCID

Affiliation:

1. College of Radiology, Taishan Medical University, Taian, Shandong, China

2. College of Information and Engineering, Taishan Medical University, Taian, Shandong, China

3. Department of Radiology, Affiliated Hospital of Taishan Medical University, Taian, Shandong, China

Abstract

Purpose. With the development of digital X-ray imaging and processing methods, the categorization and analysis of massive digital radiographic images need to be automatically finished. What is crucial in this processing is the automatic retrieval and recognition of radiographic position. To address these concerns, we developed an automatic method to identify a patient’s position and body region using only frequency curve classification and gray matching. Methods. Our new method is combined with frequency analysis and gray image matching. The radiographic position was determined from frequency similarity and amplitude classification. The body region recognition was performed by image matching in the whole-body phantom image with prior knowledge of templates. The whole-body phantom image was stitched by radiological images of different parts. Results. The proposed method can automatically retrieve and recognize the radiographic position and body region using frequency and intensity information. It replaces 2D image retrieval with 1D frequency curve classification, with higher speed and accuracy up to 93.78%. Conclusion. The proposed method is able to outperform the digital X-ray image’s position recognition with a limited time cost and a simple algorithm. The frequency information of radiography can make image classification quicker and more accurate.

Funder

Natural Science Foundation of Taishan Medical University

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adopting Deep Learning for Chest X-ray Analysis: An Extensive Survey;2023 International Conference on IoT, Communication and Automation Technology (ICICAT);2023-06-23

2. Automatic classification of medical image modality and anatomical location using convolutional neural network;PLOS ONE;2021-06-11

3. Diagnosis and precise localization of cardiomegaly disease using U-NET;Informatics in Medicine Unlocked;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3