Circulating MicroRNA Profiles Differ between Qi-Stagnation and Qi-Deficiency in Coronary Heart Disease Patients with Blood Stasis Syndrome

Author:

Hou Jincai12,Wang Jun3,Lin Chengren12,Fu Jianhua12,Ren Jianxun12,Li Lei12,Guo Hao12,Han Xiao12,Liu Jianxun12

Affiliation:

1. Xiyuan Hospital of China Academy of Chinese Medical Sciences, 1 Xiyuan Caochang, Haidian District, Beijing 100091, China

2. Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medical Sciences of Xiyuan Hospital, 1 Xiyuan Caochang, Haidian District, Beijing 100091, China

3. Institute of Basic Theory, China Academy of Chinese Medical Sciences, 16 Dong Zhi Men Nei Nan Xiao Jie, Beijing 100700, China

Abstract

We compared the circulating microRNA profiles of Qi-stagnation (QSB) and Qi-deficiency (QDB) in coronary heart disease (CHD) patients with blood stasis syndrome. Twenty-nine CHD patients were divided into QSB group and QDB group. The analysis was carried out through comparing their circulating microRNA profiles and the following bioinformatics analysis. The number of differential miRNAs in QDB group was much more than that in QSB group. Functional annotations of the differentially expressed miRNAs target genes in the QSB group and QDB group were, respectively, related to regulation of cellular component organization, regulation of glucose metabolic process, and so forth and protein kinase cascade, phosphate metabolic process, and so forth. KEGG pathway analysis showed that the process Qi-deficiency was associated with phagocytosis including endocytosis and mTOR signaling pathway. Specifically, pathway of cell adhesion molecules played the crucial role in the pathological process of Qi-stagnation, with a unique upregulation except for pathways associated with cancer signal. MicroRNA-gene-net analysis indicated that let-7c, miR-4487, miR-619, miR-8075, miR-6735, and miR-32-5p and miR-17-5p, miR-130a, and miR 320 family had the most important and extensive regulatory function for Qi-stagnation syndromes and Qi-deficiency syndromes, respectively. Differentially expressed miRNAs and concerned pathways suggest different molecular mechanisms that may mediate the pathological process of QSB and QDB syndromes.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3