Bimetallic CoMoO4 Nanosheets on Freestanding Nanofiber as Wearable Supercapacitors with Long-Term Stability

Author:

Khadka Ashwin1,Samuel Edmund2,Joshi Bhavana1,Kim Yong Il1,Aldalbahi Ali3ORCID,El-Newehy Mohamed3,Lee Hae-Seok2ORCID,Yoon Sam S.1ORCID

Affiliation:

1. School of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea

2. Energy Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul 02841, Republic of Korea

3. Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

Currently, lightweight wearable energy storage devices are in great demand owing to their use in wearable electronics and energy-efficient electric vehicles. Freestanding carbon nanofibers replace the need for metal substrates while providing a rapid electrical network owing to their excellent electrical properties. Bimetallic oxides with multivalent oxidation states facilitate the rapid transfer of electrolytic ions owing to efficient Faradaic reactions, thereby enhancing the overall energy storage capability. In this study, CoOx@CNF was derived from ZIF-67 (zeolitic-imidazolate framework) @PAN-2MI fibers that were stabilized in air at 280°C and then annealed in argon at 900°C. Subsequently, Co was seeded on the annealed CoOx@CNF and subjected to a hydrothermal process in sodium molybdate dihydrate solution to grow CoMoO4 nanosheets, eventually forming bimetallic CoMoO4@CNF. The concentration of sodium molybdate solution was varied to determine the optimal growth conditions for CoMoO4 nanosheets. The energy density of the optimal bimetallic CoMoO4@CNF sample was 166.5 μWh cm-2 at a power density of 200 μW cm-2; this represented a nearly twofold increase compared to that of the single metallic CoOx@CNF. Powering humidity sensors using only one CoMoO4@CNF supercapacitor was demonstrated. The optimal sample remained stable during long-term galvanostatic charge and discharge cycles ( N cyc = 30,000 ) and retained 100% of its specific capacitance.

Funder

King Saud University

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3