Wound Photobiomodulation Treatment Outcomes in Animal Models

Author:

Lopez Alondra1ORCID,Brundage Cord1ORCID

Affiliation:

1. Animal and Veterinary Sciences, Cal Poly Pomona, Pomona 91768, USA

Abstract

The possibilities that photobiomodulation has brought on to the medical field are ever expanding and the scope it has reached is infinite. Determining how this relatively new treatment technique can be incorporated into the veterinary medical field is of interest to many medical professionals. In this review, we examine the treatment outcomes of low-level-laser therapy (LLLT) in different animal models to pinpoint any similarities between the studies. A search was conducted to identify LLLT studies using different animal models with an open or closed wound. The studies were compared to identify the laser parameters that resulted in positive treatment outcomes. The overall result of the studies examined indicated that daily laser exposure at a wavelength of a 600 or 800 nm range was the most beneficial across the rodent studies regardless of health status or wound type. More studies on rabbit, canine, and equine models are needed to explain the inconsistent results reviewed and find the correct treatment parameters for these species. Further research involving LLLT studies that focus on different factors including health status, treatment interval, wavelength, and energy density is needed to help validate our knowledge about the efficacy of using photobiomodulation in the veterinary medical field.

Publisher

Hindawi Limited

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Low Level Laser, Photobiomodulation and Electromagnetics for Wound Therapy;Techniques in Small Animal Wound Management;2024-03

2. Unleashing light's healing power: an overview of photobiomodulation for Alzheimer's treatment;Future Science OA;2024-01-11

3. Integrative Medicine in Zoological Species;Fowler' s Zoo and Wild Animal Medicine Current Therapy, Volume 10;2023

4. Experimental Study of the Effect of Photobiomodulation Therapy on the Regulation of the Healing Process of Chronic Wounds;International Journal of Photoenergy;2021-09-07

5. Light-Based Devices for Wound Healing;Current Dermatology Reports;2020-08-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3