An Effective LSTM Recurrent Network to Detect Arrhythmia on Imbalanced ECG Dataset

Author:

Gao Junli1ORCID,Zhang Hongpo12ORCID,Lu Peng3ORCID,Wang Zongmin1ORCID

Affiliation:

1. Cooperative Innovation Center of Internet Healthcare, Zhengzhou University, Zhengzhou 450000, China

2. State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450001, China

3. Department of Automation, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China

Abstract

To reduce the high mortality rate from cardiovascular disease (CVD), the electrocardiogram (ECG) beat plays a significant role in computer-aided arrhythmia diagnosis systems. However, the complex variations and imbalance of ECG beats make this a challenging issue. Since ECG beat data exist in heavily imbalanced category, an effective long short-term memory (LSTM) recurrence network model with focal loss (FL) is proposed. For this purpose, the LSTM network can disentangle the timing features in complex ECG signals, while the FL is used to resolve the category imbalance by downweighting easily identified normal ECG examples. The advantages of the proposed network have been verified in the MIT-BIH arrhythmia database. Experimental results show that the LSTM network with FL achieved a reliable solution to the problem of imbalanced datasets in ECG beat classification and was not sensitive to quality of ECG signals. The proposed method can be deployed in telemedicine scenarios to assist cardiologists into more accurately and objectively diagnosing ECG signals.

Funder

Cloud Computing and Big Integration of Cloud Computing and Big Data, Innovation of Science and Education

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3