Synthesis and Characterization of Magnetite-Alginate Nanoparticles for Enhancement of Nickel and Cobalt Ion Adsorption from Wastewater

Author:

El-Shamy Omnia A. A.1ORCID,El-Azabawy Ragaa E.23,El-Azabawy Olfat. E.1

Affiliation:

1. Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt

2. Chemistry Department, Faculty of Science, Al-Azhar University (Girls), Nasr City, Cairo, Egypt

3. Chemistry Department, Faculty of Science and Art-Al Mandaq (Girls), Al-Baha University, Saudi Arabia

Abstract

Superparamagnetic magnetite-alginate nanoparticles (M-AlgNPs) were synthesized utilizing a coprecipitation method. Then, the prepared M-AlgNPs were characterized via Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction spectroscopy (XRD) to affirm the formation and the crystallinity of this composite. In addition, the surface morphology of the prepared nanoparticles was inspected by transmission electron microscopy (TEM) which revealed well-dispersed nanoparticles of Fe3O4 into alginate. The adsorption characteristics of the synthesized nanoparticles for removing Ni+2 and Co+2 from wastewater were evaluated via atomic absorption measurements (AAS). The elimination efficiency of the M-AlgNPs was detected at pH=7 in 100 ppm (initial concentration) of Ni+2 and Co+2, separately. The M-AlgNPs provided the maximum equilibrium uptake percentage for Ni+2 and Co+2 of 97.88 and 95.01%, respectively. The adsorption of Ni+2 and Co+2 onto the M-AlgNP surface was found to fit the Langmuir model with R2 values higher than that obtained from the Freundlich model for both metal ions. Moreover, RL “separating factor” for the adsorption process was assessed and found to be less than unity; this expresses the higher ability of the investigated metal ions to be adsorbed onto the M-AlgNP surface. The adsorption method was discovered to be pH-dependent and well-suited to the isothermal equations of Langmuir and Freundlich. For regeneration studies, M-AlgNPs have been investigated and results confirmed that it could be reused with effective sorption capacity over three cycles.

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3