Affiliation:
1. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
2. School of Aeronautics, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
Abstract
Frequent flight conflicts will be observed as the number of aircrafts increases, and such conflicts will cause unprecedented challenges in flight safety; thus, the flight characteristics of small aircrafts under the wake flow of a large airliner should be thoroughly analyzed. Combined with the sliding mesh technique, a computational fluid dynamics (CFD) method is proposed in this paper to simulate three wake flow patterns, i.e., wingtip vortex, jet flow, and propeller slipstream, and then, the static and dynamic derivatives that represent the stability of the fly wing under the wake flow are identified by using the least squares method. The results demonstrate that both the steady and unsteady aerodynamics of the fly wing are affected by wake flows: wingtip vortices increase the lift-to-drag ratio and considerably change the dynamic damping; jet flow reduces both the static and dynamic damping; and propeller slipstream leads to slow variations in the dynamic damping and decreases in the lift-to-drag ratio.
Funder
National Natural Science Foundation of China
Subject
Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献