Survivability Evaluation Method for Cascading Failure of Electric Cyber Physical System Considering Load Optimal Allocation

Author:

Qu Zhaoyang12ORCID,Dong Yunchang3ORCID,Qu Nan4ORCID,Wang Lei1ORCID,Li Yang56ORCID,Zhang Yu1ORCID,Mugemanyi Sylvere1

Affiliation:

1. College of Information Engineering, Northeast Electric Power University, Jilin 132012, China

2. Jilin Engineering Technology Research Center of Intelligent Electric Power Big Data Processing, Jilin 132012, China

3. NARI Group Corporation (State Grid Electric Power Research Institute), Nanjing 211106, China

4. Maintenance Company of Jiangsu Power Company, Nanjing 210000, China

5. School of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China

6. Energy Systems Division, Argonne National Laboratory, IL 60439, USA

Abstract

The scale of the electric cyber physical system (ECPS) is continuously extending, and the existing cascade failure models ignore both the information flow and power flow transferring characteristics and also lack effective survivability analysis. In this paper, the quantitative evaluation method for cascading failure of ECPS survivability considering optimal load allocation is proposed. Firstly, according to the system topological structure and correlation, the degree-betweenness weighted correlation matrix of ECPS is established by defining the degree function as well as the electric betweenness, and the formal representation of coupled ECPS network model is realized. Secondly, based on the structural connectivity change and risk propagation range of ECPS cascade failure, the survivability evaluation model is designed by taking into account the constraints such as node load capacity limitation, information flow optimal allocation strategy, power flow optimization equation, and system safety operation. Finally, the firefly algorithm with chaotic Lévy flight is proposed to solve the evaluation model efficiently. The case study vividly shows that the evaluation method can effectively quantify the survivability of ECPS and thus enhance the evaluation efficiency of large-scale coupled systems.

Funder

National Natural Science Foundation Key Project

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3