Online Prediction of Ship Roll Motion in Waves Based on Auto-Moving Gird Search-Least Square Support Vector Machine

Author:

Xu Chang-Zhou1,Zou Zao-Jian12ORCID

Affiliation:

1. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

2. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

A novel method based on auto-moving grid search-least square support vector machine (AGS-LSSVM) is proposed for online predicting ship roll motion in waves. To verify the method, simulation data are used, which are obtained by solving the second-order nonlinear differential equation of ship roll motion using the fourth-order Runge–Kutta method, while the Pierson–Moskowitz spectrum (P–M spectrum) is used to simulate the irregular waves. Combining the sliding time window with the least square support vector machine (LS-SVM), the samples in the time window are used to train the LS-SVM model, and the model hyperparameters are optimized online by the auto-moving grid search (AGS) method. The trained model is used to predict the roll motion in the next 30 seconds, and the prediction results are compared with the simulation data. It is shown that the AGS-LSSVM is an effective method for online predicting ship roll motion in waves.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference28 articles.

1. Scale effects in AR model real-time ship motion prediction;J. Hua;Ocean Engineering,2020

2. Roll motion prediction using a hybrid deep learning and ARIMA model

3. Time-series prediction using a local linear wavelet neural network

4. Application of the Grey topological method to predict the effects of ship pitching

5. Online prediction of ship rolling based on varying parameters LSSVM;S. Liu;Journal of Ship Mechanics,2012

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3