Study on Dynamic Characteristics of the Disc Spring System in Vibration Screen

Author:

Zhou Jiacheng1,Zhang Chuzhe1,Wang Ziqiu1,Mao Kuanmin1ORCID

Affiliation:

1. School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

To avoid too large exciting force in traditional linear vibrating screen and unstable working state in resonance screen, the disc spring system is applied in the linear vibration screen. The model of the disc spring system in vibration screen is established by simulation and experiment. The characteristics of modal and amplitude of the disc spring system in vibration screen are studied. We found that the disc spring system vibrates in vertical direction at the third-order natural frequency, which is consistent with the direction of the vibration screen when screening particles. Moreover, the third-order natural frequencies in simulation and experiment are basically consistent. Furthermore, the maximum amplitude of the disc spring system appears at 960 r/min (16 Hz), which is in accord with the third-order natural frequency. Meanwhile, the amplitude increases proportionally with the increase of exciting force, while the amplification factors are the same under three different exciting forces. This indicates that the disc spring system has excellent linearity. The results of research provide guidance for design and application of elastic components on the vibration screen.

Funder

National High-tech Research and Development Program

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3