Affiliation:
1. School of Computer Engineering and Applied Mathematics, Changsha University, Changsha 410003, China
2. School of Information Science and Engineering, Hunan Women’s University, Changsha 410004, China
Abstract
Automatically detecting mud in bauxite ores is important and valuable, with which we can improve productivity and reduce pollution. However, distinguishing mud and ores in a real scene is challenging for their similarity in shape, color, and texture. Moreover, training a deep learning model needs a large amount of exactly labeled samples, which is expensive and time consuming. Aiming at the challenging problem, this paper proposed a novel weakly supervised method based on deep active learning (AL), named YOLO-AL. The method uses the YOLO-v3 model as the basic detector, which is initialized with the pretrained weights on the MS COCO dataset. Then, an AL framework-embedded YOLO-v3 model is constructed. In the AL process, it iteratively fine-tunes the last few layers of the YOLO-v3 model with the most valuable samples, which is selected by a Less Confident (LC) strategy. Experimental results show that the proposed method can effectively detect mud in ores. More importantly, the proposed method can obviously reduce the labeled samples without decreasing the detection accuracy.
Funder
Education Department of Hunan Province
Subject
General Engineering,General Mathematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献