An Energy-Balanced Path Planning Algorithm for Multiple Ferrying UAVs Based on GA

Author:

Wang Lisong1ORCID,Zhang Xiaoliang1,Deng Pingyu23,Kang Jiexiang23,Gao Zhongjie3,Liu Liang1

Affiliation:

1. College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

2. National Key Laboratory of Science and Technology on Avionics Integration, China Aeronautical Radio Electronics Research Institute, Shanghai 200233, China

3. Department of Software, China Aeronautical Radio Electronics Research Institute, Shanghai 200233, China

Abstract

When performing a search and rescue mission, unmanned aerial vehicles (UAVs) should continuously search targets above the mission area. In order to transfer the search and rescue information quickly and efficiently, two types of UAVs, the ferrying UAVs and the searching UAVs, are used to complete the mission. Obviously, this application scenario requires an efficient path planning method for ferrying UAVs. The existing path planning methods for ferrying UAVs usually focus on shortening the path length and ignore the different initial energy of ferrying UAVs. However, the following problem does exist: if the ferrying UAV with less initial energy is assigned a longer path, meaning that the ferrying UAV with less initial energy will ferry messages for more searching UAVs. When the lower-initial-energy ferrying UAV is running out of energy, more searching UAVs will no longer deliver messages successfully. Therefore, the mismatch between the planned path length and the initial energy will eventually result in a lower global message delivery ratio. To solve this problem, we propose a new concept energy-factor for a ferrying UAV and use the variance of all ferrying UAVs’ energy-factor to measure the balance between the planned path length and the initial energy. Further, we model the energy-balanced path-planning problem for multiple ferrying UAVs, which actually is a multiobject optimization problem of minimizing the planned path length and minimizing the variance of all ferrying UAVs’ energy-factor. Based on the genetic algorithm, we design and implement an energy-balanced path planning algorithm (EMTSPA) for multiple ferrying UAVs to solve this multiobject optimization problem. Experimental results show that EMTSPA effectively increases the global message delivery ratio and decreases the global message delay.

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3