A Modified RBF Neuro-Sliding Mode Control Technique for a Grid Connected PMSG Based Variable Speed Wind Energy Conversion System

Author:

Douanla Rostand Marc12,Kenné Godpromesse1ORCID,Pelap François Béceau3ORCID,Fotso Armel Simo12

Affiliation:

1. Unité de Recherche d’Automatique et d’Informatique Appliquée (LAIA), Département de Génie Électrique, IUT FOTSO Victor Bandjoun, Université de Dschang, BP 134, Bandjoun, Cameroon

2. Unité de Recherche de Matière Condensée, d’Electronique et de Traitement du Signal (LAMACETS), Département de Physique, Université de Dschang, BP 69, Dschang, Cameroon

3. Unité de Recherche de Mécanique et de Modélisation des Systèmes Physiques (L2MSP), Département de Physique, Université de Dschang, BP 69, Dschang, Cameroon

Abstract

A modified control scheme based on the combination of online trained neural network and sliding mode techniques is proposed to enhance maximum power extraction for a grid connected permanent magnet synchronous generator (PMSG) wind turbine system. The proposed control method does not need the knowledge of the uncertainty bounds nor the exact model of the nonlinear system. Since the neural network is trained online, the time to estimate good weights can affect the dynamic performance of the process during the startup phase. Therefore an appropriate way to smoothly and explicitly accelerate the neural network rate of convergence during the startup phase is proposed. Furthermore, a flexible grid side voltage source converter control structure which can handle both grid connected and standalone modes based on conventional proportional integral (PI) control method is presented. Simulations are done in Matlab/Simulink environment to verify the effectiveness and assess the performance of the proposed controller. The results analysis shows the superiority of the proposed RBF neuro-sliding mode controller compared to a nonlinear controller based on sliding mode control method when the system undergoes parameter uncertainties.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Science Applications,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3