Social-Aware Device-to-Device Offloading Based on Experimental Mobility and Content Similarity Models

Author:

Aoude Lynn1,Dawy Zaher1ORCID,Sharafeddine Sanaa2,Frenn Karim1,Jahed Karim2

Affiliation:

1. Department of Electrical and Computer Engineering, American University of Beirut, Lebanon

2. Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon

Abstract

Device-to-device (D2D) offloading has been shown to be a highly effective technique to enhance the performance of wireless networks. Yet, for any two mobile users to share data efficiently and reliably via D2D links, they should be in close proximity for long enough period of time, share similar content interests, and have some level of incentive and trust to cooperate. In this work, we focus on the practical implementation aspects of D2D data sharing taking into account realistic operational conditions. To this end, we design and conduct an experimental study to collect location and neighbor discovery data from 38 mobile users in a university campus over several weeks using our own customized crowdsourcing Android mobile application. The collected data is then processed and utilized to empirically model mobility-related parameters that include contact frequency, contact duration, and inter-contact duration. The participating users did also fill a user interest survey in order to correlate mobility and connectivity patterns with content interests and social network relations. The obtained insights are then used to develop a practical implementation framework for designing effective D2D data sharing strategies. To test the proposed ideas under realistic operational constraints, we design and implement a social-aware D2D data sharing Android mobile application and demonstrate its functionality and effectiveness using an example case study scenario.

Funder

Qatar National Research Fund

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3