Enhancing Traffic Flow Forecasting with Deep‐Learning and Noise Reduction Techniques

Author:

Zhao JinqiuORCID,Yu LeORCID,Wang ShuhuaORCID,Zhang ZhonghaoORCID

Abstract

Traditional short‐term traffic volume forecasting approaches make it difficult to predict the highly spatiotemporally coupled short‐time traffic. To tackle the problem, this paper first proposes a variational modal algorithm (GWO‐VMD) based on the optimization of the gray wolf search algorithm. It aims to decompose and reduce the noise of short‐time traffic flows. Meanwhile, it reduces the intricacy of data sequences and enhances the regularity pattern. To address the insufficient utilization of spatiotemporal features, this paper presents an innovative deep‐learning traffic prediction framework based on the stacking of multiple temporal trend‐aware graph attention (TGA) layers and gated temporal convolution (GTC) layers, which are called trend‐aware temporal graph neural network (TTGAN). TGA dynamically models the space‐time relationships of traffic data, and GTC models the temporal characteristics of traffic data. The experimental findings demonstrate that the MAPE model, as presented, achieves a reduction of 9% and 2% compared to the AGCRN and GWNET models, respectively, in the domain of deep spatiotemporal graph modeling. Data decomposition and noise reduction are necessary to achieve accurate results. This model has superior performance in terms of mean absolute error (MAE), coefficient of determination (R2), and explained variance score (EVAR).

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3