Grey Oyster Mushroom Biofarm for Small-Scale Entrepreneurship

Author:

Berhe Sbhatu Desta1ORCID,Abraha Haftom Baraki1,Fisseha Hiluf Tekle1

Affiliation:

1. Department of Biological and Chemical Engineering, Mekelle Institute of Technology, Mekelle University, P.O. Box 1632, Mekelle, Ethiopia

Abstract

This paper reports the productivity of a small-scale pilot biofarm of grey oyster mushroom (Pleurotus sajor-caju (Fr.) Sing.). The pilot was tested in Mekelle city (Ethiopia) in a brick-walled dark room. Growing structures were constructed by erecting three wood poles and fixing them with three wooden side bars at multiple locations to make a prism-shaped rack with multiple triangular open shelves, each capable of carrying one bag of spawned substrate. Mushroom substrates were prepared from maize stalk and wheat bran supplement. Pasteurized chopped maize stalk and wheat bran were mixed at the ratio of 10:0, 9:1, 8:2, and 7:3—yielding four treatments. Five kilograms of substrate was taken from each treatment and was mixed with one kilogram of gypsum to produce a growing mass. Each mass was spawned with 200 g of inoculum under aseptic conditions and put in polyethylene bags. The treatments were replicated thrice and the bags were put on the growth racks in completely randomized design. The growing room was maintained at optimum conditions. Maize stalk substrates supplemented with 10% and 20% of wheat bran have resulted in statistically comparable productivities but statistically significantly higher than those grown on nonsupplemented and highly supplemented maize stalk substrates (p ≤ 0.05). The ingenuity of the design and the convenience of the construction of the racks, the availability of the substrates, and the simplicity of the management and maintenance of the biofarm rendered the piloted design suitable for home-based and small- and medium-scale mushroom biofarm entrepreneurship.

Funder

Mekelle University

Publisher

Hindawi Limited

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3