Affiliation:
1. School of Civil Engineering, Wuhan University, Wuhan 430072, China
2. Cultivation Base for State Key Laboratory for Seismic Control and Structural Safety, Guangzhou University, Guangzhou 510000, China
Abstract
A novel cost-effective isolator reinforced by engineering plastics has been designed and manufactured for seismic protection for low-rise buildings in less developed areas. The reinforcement is flexible in tension, which is similar to fiber-reinforced isolators. However, available solutions for fiber-reinforced isolators are not applicable, because the Poisson effect of engineering plastics cannot be neglected, which is done for fiber reinforcement. In this paper, analytical solutions for compression and bending stiffness for rectangular isolators reinforced by engineering plastics are proposed, with both the Poisson effect of the reinforcement and the effect of rubber compressibility taken into consideration. Then, the simplified solutions are also derived, which can greatly improve calculation efficiency. To validate the solutions, finite element analysis is conducted on a set of isolators with different reinforcement stiffnesses. The results show the superiority of the proposed solutions to the previous solutions for fiber-reinforced isolators. A series of experimental tests of the isolators are also carried out to verify the solutions. Both the analytical and the simplified solutions match well with the experimental results.
Funder
National Key R&D Program of China
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献