Antioxidative Stress and Anti-Inflammatory Activity of Fucoidan Nanoparticles against Nephropathy of Streptozotocin-Induced Diabetes in Rats

Author:

Wardani Giftania12ORCID,Nugraha Jusak3ORCID,Mustafa Mohd. Rais4ORCID,Sudjarwo Sri Agus5ORCID

Affiliation:

1. Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia

2. Program Study of Pharmacy, Faculty of Medicine, Hang Tuah University, Surabaya, Indonesia

3. Department of Clinical Pathology, Dr. Soetomo Hospital, Universitas Airlangga, Surabaya, Indonesia

4. Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia

5. Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia

Abstract

Oxidative stress and inflammation have been shown to interact and have the role of importance in causing diabetic nephropathy complications. Fucoidan has a strong antioxidant and anti-inflammation effect, so the aim of this research was to evaluate the antioxidative stress and anti-inflammatory effect of fucoidan nanoparticles against nephropathy of streptozotocin-induced diabetes in rats. Fucoidan nanoparticles are characterized using dynamic light scattering (DLS) and scanning electron microscope (SEM). The rats were randomized into the control group (were given with aquadest), streptozotocin group (were injected with streptozotocin at a dose of 55 mg/kg BW i.p.), and fucoidan nanoparticle group (were given orally with fucoidan at doses 75, 150, and 300 mg/kg BW and then injected streptozotocin at a dose of 55 mg/kg BW i.p.). The blood was taken to evaluate the level of blood urea nitrogen (BUN) and creatinine. The kidney tissues were collected to measure malondialdehyde (MDA), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α) by ELISA; superoxide dismutase (SOD), and glutathione peroxidase (GPx) by immunohistochemical staining and histological observation by Hematoxylin & Eosin (H&E) staining. The DLS demonstrated that the fucoidan nanoparticle size was 330.6 ± 58.8 nm, and the SEM showed an irregular shape with a rough surface image. The administration of streptozotocin significantly increased BUN, creatinine, MDA, IL-6, and TNF-α levels, whereas expression of SOD and GPx decreased as compared with the control group ( p < 0.05 ). The administration of fucoidan nanoparticles only at a dose of 300 mg/kg BW significantly decreases BUN, creatinine, MDA, IL-6, and TNF-α levels. However, fucoidan nanoparticles at a dose of 300 mg/kg BW significantly increase SOD and GPx expression as compared with the streptozotocin group ( p < 0.05 ). The administration of streptozotocin caused the loss of normal kidney cell structure and necrosis, while treatment with fucoidan nanoparticles improved renal cell necrosis. It can be concluded that fucoidan nanoparticles are promising agents in terms of the protection afforded against streptozotocin-induced nephropathy through antioxidative stress by decreasing MDA and increasing SOD and GPx and through anti-inflammatory effect by decreasing levels of IL-6 and TNF-α.

Funder

Universitas Airlangga

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Reference28 articles.

1. Cellular death, reactive oxygen species (ROS) and diabetic complications

2. Molecular pathways associated with oxidative stress in diabetes mellitus

3. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links;O. O. Oguntibeju;International journal of physiology, pathophysiology and pharmacology,2019

4. A causal link between oxidative stress and inflammation in cardiovascular and renal complications of diabetes

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3