Thermodynamic, Kinetic, and Equilibrium Parameters for the Removal of Lead and Cadmium from Aqueous Solutions with Calcium Alginate Beads

Author:

Alfaro-Cuevas-Villanueva Ruth1,Hidalgo-Vázquez Aura Roxana1,Cortés Penagos Consuelo de Jesús2,Cortés-Martínez Raúl2

Affiliation:

1. Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58060, Edif. B1., CU, Morelia, MICH, Mexico

2. Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Tzintzuntzan 173 Col. Matamoros, CP 58240, Morelia, MICH, Mexico

Abstract

The sorption of cadmium (Cd) and lead (Pb) by calcium alginate beads (CAB) from aqueous solutions in batch systems was investigated. The kinetic and thermodynamic parameters, as well as the sorption capacities of CAB in each system at different temperatures, were evaluated. The rate of sorption for both metals was rapid in the first 10 minutes and reached a maximum in 50 minutes. Sorption kinetic data were fitted to Lagergren, pseudo-second-order and Elovich models and it was found that the second-order kinetic model describes these data for the two metals; comparing kinetic parameters for Cd and Pb sorption a higher kinetic rate (K2) for Pb was observed, indicating that the interaction between lead cations and alginate beads was faster than for cadmium. Similarly, isotherm data were fitted to different models reported in literature and it was found that the Langmuir-Freundlich (L-F) and Dubinin-Radushkevich (D-R) models describe the isotherms in all cases. CAB sorption capacity for cadmium was 27.4 mg/g and 150.4 mg/g for lead, at 25°C. Sorption capacities of Cd and Pb increase as temperature rises. According to the thermodynamic parameters, the cadmium and lead adsorption process was spontaneous and endothermic. It was also found that pH has an important effect on the adsorption of these metals by CAB, as more were removed at pH values between 6 and 7.

Funder

Coordinación de la Investigación Científica

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3