WBSN in IoT Health-Based Application: Toward Delay and Energy Consumption Minimization

Author:

Alkhayyat Ahmed1ORCID,Thabit Ahmed A.2,Al-Mayali Fahad A.1,Abbasi Qammer H.3

Affiliation:

1. Department of Computer Technical Engineering, College of Technical Engineering, Islamic University, 54001 Najaf, Iraq

2. Department of Communications Computer Engineering, Al-Rafidain University, 10062 Baghdad, Iraq

3. School of Engineering, University of Glasgow, G12 8QQ Glasgow, UK

Abstract

The wireless body sensor network (WBSN) technologies are one of the essential technologies of the Internet of things (IoT) growths of the healthcare paradigm, where every patient is monitored through a group of small-powered and lightweight sensor nodes. Thus, energy consumption is a major issue in WBSN. The major causes of energy wastage in WBSN are collisions and retransmission process. However, the major cause of the collision happened when two sensors are attempting to transmit data at exactly the same time and same frequency, and the major cause of the retransmission process happened when the collision takes place or data does not received properly due to channel fading. In this paper, we proposed a cognitive cooperative communication with two master nodes, namely, as two cognitive master nodes (TCMN), which can eliminate the collision and reduce the retransmission process. First, a complete study of a scheme is investigated in terms of network architecture. Second, a mathematical model of the link and outage probability of the proposed protocol are derived. Third, the end-to-end delay, throughput, and energy consumption are analyzed and investigated. The simulation and numerical results show that the TCMN can do system performance under general conditions with respect to direct transmission mode (DTM) and existing work.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3