Abstract
During the past few years, we have seen a tremendous increase in various kinds of anomalies in Wireless Sensor Network (WSN) communication. Recently, researchers have shown a lot of interest in applying biologically inspired systems for solving network intrusion detection problems. Several solutions have been proposed using Artificial Immune System (AIS), Ant Colony Optimization (ACO), Artificial Bee Colony (ABC) algorithm, Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and so forth. In this paper, we propose a bioinspired solution using Negative Selection Algorithm (NSA) of the AIS for anomalies detection in WSNs. For this purpose, we implement the enhanced NSA and make a detector set that holds anomalous packets only. Then the random packets are tested and matched with the detector set and anomalies are identified. Anomalous data packets are used for further processing to identify specific anomalies. In this way, the number of wormholes, packets delayed, and packets dropped are calculated and identified. Simulations are performed on a large dataset and the results show high accuracy of the proposed algorithm in detecting anomalies. The proposed NSA is also compared with Clonal Selection Algorithm (CSA) for the same dataset. The results show significant improvement of the proposed NSA over CSA in most of the cases.
Funder
Deanship of Scientific Research at King Saud University
Subject
Computer Networks and Communications,General Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献