Affiliation:
1. Pacing Electrophysiology Division, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Urumqi, Xinjiang 830054, China
Abstract
In the present study, we examined the advanced glycation end products- (AGEs-) induced endothelial-to-mesenchymal transition (EndMT) in human umbilical vein endothelial cells (HUVECs). Results demonstrated that AGE-BSAs significantly reduced the cluster of differentiation 31 (CD 31) expression, whereas they promoted the expression of fibroblast-specific protein-1 (FSP-1),α-smooth muscle antibody (α-SMA), and collagen I at both mRNA and protein levels in HUVECs. And the AGE-BSAs also promoted the receptors for AGEs (RAGEs) and receptor I for TGF-β(TGFR I) markedly with a dose dependence, whereas the Sirt 1 was significantly downregulated by the AGE-BSA at both mRNA and protein levels. Moreover, the Sirt 1 activity manipulation with its activator, resveratrol (RSV), or its inhibitor, EX527, markedly inhibited or ameliorated the AGE-mediated TGF-βupregulation. And the manipulated Sirt 1 activity positively regulated the AGE-induced CD31, whereas it negatively regulated the AGE-induced FSP-1. Thus, Sirt 1 was confirmed to regulate the AGE-induced EndMT via TGF-β. In summary, we found that AGE-BSA induced EndMT in HUVECs via upregulating TGF-βand downregulating Sirt 1, which also negatively regulated TGF-βin the cell. This study implied the EndMT probably as an important mechanism of AGE-induced cardiovascular injury.
Funder
Xinjiang Medical University
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献