Affiliation:
1. Department of Mathematics, Nanchang University, Nanchang 330031, China
Abstract
Total variation image denoising models have received considerable attention in the last two decades. To solve constrained total variation image denoising problems, we utilize the computation of a resolvent operator, which consists of a maximal monotone operator and a composite operator. More precisely, the composite operator consists of a maximal monotone operator and a bounded linear operator. Based on recent work, in this paper we propose a fixed-point approach for computing this resolvent operator. Under mild conditions on the iterative parameters, we prove strong convergence of the iterative sequence, which is based on the classical Krasnoselskii–Mann algorithm in general Hilbert spaces. As a direct application, we obtain an effective iterative algorithm for solving the proximity operator of the sum of two convex functions, one of which is the composition of a convex function with a linear transformation. Numerical experiments on image denoising are presented to illustrate the efficiency and effectiveness of the proposed iterative algorithm. In particular, we report the numerical results for the proposed algorithm with different step sizes and relaxation parameters.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献