A Novel Context Aware Joint Segmentation and Classification Framework for Glaucoma Detection

Author:

Ganesh S. Sankar1,Kannayeram G.2,Karthick Alagar3ORCID,Muhibbullah M.4ORCID

Affiliation:

1. Department of Artificial Intelligence and Data Science, KPR Institute of Engineering and Technology, Coimbatore, 641407 Tamil Nadu, India

2. Department of Electrical and Electronics Engineering, National Engineering College, Kovilpatti, 628503 Tamil Nadu, India

3. Renewable Energy Lab, Department of Electrical and Electronics Engineering, KPR Institute of Engineering and Technology, Coimbatore, 641407 Tamil Nadu, India

4. Department of Electrical and Electronic Engineering, Bangladesh University, Dhaka 1207, Bangladesh

Abstract

Glaucoma is a chronic ocular disease characterized by damage to the optic nerve resulting in progressive and irreversible visual loss. Early detection and timely clinical interventions are critical in improving glaucoma-related outcomes. As a typical and complicated ocular disease, glaucoma detection presents a unique challenge due to its insidious onset and high intra- and interpatient variabilities. Recent studies have demonstrated that robust glaucoma detection systems can be realized with deep learning approaches. The optic disc (OD) is the most commonly studied retinal structure for screening and diagnosing glaucoma. This paper proposes a novel context aware deep learning framework called GD-YNet, for OD segmentation and glaucoma detection. It leverages the potential of aggregated transformations and the simplicity of the YNet architecture in context aware OD segmentation and binary classification for glaucoma detection. Trained with the RIGA and RIMOne-V2 datasets, this model achieves glaucoma detection accuracies of 99.72%, 98.02%, 99.50%, and 99.41% with the ACRIMA, Drishti-gs, REFUGE, and RIMOne-V1 datasets. Further, the proposed model can be extended to a multiclass segmentation and classification model for glaucoma staging and severity assessment.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3