Optimization of Ionomer Content in Anode Catalyst Layer for Improving Performance of Anion Exchange Membrane Water Electrolyzer

Author:

Park Yoo Sei12,Jang Myeong Je3,Jeong Jae-Yeop1,Lee Jooyoung1,Jeong Jaehoon1,Kim Chiho1,Yang Juchan1,Choi Sung Mook14ORCID

Affiliation:

1. Department of Hydrogen Energy Materials, Surface & Nano Materials Division, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea

2. Department of Advanced Material Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Chungbuk 28644, Republic of Korea

3. Liquid Sunlight Alliance (LiSA) and Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA

4. Advanced Materials Engineering, University of Science and Technology (UST), Yuseong-gu, Daejeon 34113, Republic of Korea

Abstract

Anion exchange membrane (AEM) water electrolyzers, which are considered next-generation hydrogen production energy devices, generate hydrogen using a nonprecious metal as the electrocatalyst. However, most current studies tend to focus on the development of highly active electrocatalysts based on nonprecious metals, and there have been few attempts to develop improved electrodes for these devices. In particular, the catalyst layer of the electrode is the key component that directly affects the performance of AEM electrolyzers. In this study, we developed a high-performance anode for the AEM water electrolyzer by optimizing the ionomer content of the anode catalyst layer. In particular, the electrochemical behavior of the AEM electrolyzer was systematically analyzed while varying the amount of ionomer present within the anode catalyst layer. The ionomer content significantly affects the ohmic and mass transport losses of the AEM electrolyzer and consequently plays an important role in determining its performance. Upon employing the optimized ionomer, a current density of 1.44 A/cm2 was achieved at 1.8 V, representing a 25% improvement compared to using a nonoptimized ionomer. In addition, the ionomer content also significantly affects the durability of the system. Thus, this study highlights the importance of developing improved electrodes for the realization of high-performance AEM water electrolyzers.

Funder

Korea Evaluation Institute of Industrial Technology

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3