Advanced FMECA Method Based on Intuitionistic 2-Tuple Linguistic Variables and the Triangular Fuzzy Analytic Hierarchy Process

Author:

Pan Guangze1ORCID,Li Dan12ORCID,Li Qian1ORCID,Li Yaqiu13ORCID,Wang Yuanhang1ORCID

Affiliation:

1. Center for Reliability and Environmental Engineering, China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 511370, China

2. Center for Reliability and Environmental Engineering, Guangdong Provincial Key Laboratory of Electronic Information Products Reliability Technology, Guangzhou 511370, China

3. Key Laboratory of Active Medical Devices Quality & Reliability Management and Assessment, Guangzhou 511370, China

Abstract

Failure mode effects and criticality analysis (FMECA) is a commonly adopted approach to defining, assessing, and reducing possible failures in designs, systems, processes, products, and services. Traditional FMECA ranks the failure modes of products based on a risk priority number (RPN), which is obtained by multiplying the risk elements. Conventional FMECA has the shortcomings of badly handling unknown information and unreasonably assessing RPNs. To deal with these issues, an advanced FMECA method based on intuitionistic 2-tuple linguistic variables (I2LVs) and the triangular fuzzy analytic hierarchy process (TFAHP) is proposed. In this method, the fuzzy evaluation of risk elements given by different FMECA members is represented by I2LVs, which can efficiently handle unknown information. The TFAHP method is adopted to assess the weights of risky elements and rank the risk priorities of different failure modes. Finally, an application case of an insulated-gate bipolar transistor is used to verify the effectiveness and robustness of the proposed method.

Funder

Guangdong Basic and Applied Basic Research Foundation

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3