English Text Recognition Deep Learning Framework to Automatically Identify Fake News

Author:

Wu Fei1,Luo Xiaoyu2ORCID

Affiliation:

1. Hunan Institute of Engineering, 411104 Xiangtan, Hunan, China

2. Hunan University of Technology and Business, 410205 Changsha, Hunan, China

Abstract

Fake news spreading rapidly worldwide is considered one of the most severe problems of modern technology that needs to be addressed immediately. The remarkable increase in the use of social media as a critical source of information combined with the shaking of trust in traditional media, the high speed of digital news dissemination, and the vast amount of information circulating on the Internet have exacerbated the problem of so-called fake news. The present work proves the importance of detecting fake news by taking advantage of the information derived from friendships between users. Specifically, using an innovative deep temporal convolutional network (DTCN) scheme assisted using the tensor factorization non-negative RESCAL method, we take advantage of class-aware rate tables during and not after the factorization process, producing more accurate representations to detect fake news with exceptionally high reliability. In this way, the need to develop automated methods for detecting false information is demonstrated with the primary aim of protecting readers from misinformation.

Funder

Hunan Provincial Social Science Fund

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ensemble Deep Learning Technique based English Text Detection and Recognition Approach;2024 Second International Conference on Data Science and Information System (ICDSIS);2024-05-17

2. Natural Language Processing to Detect Fake News in Arabic: A Survey Paper;2023 3rd International Conference on Computing and Information Technology (ICCIT);2023-09-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3