Preliminary Evaluation of a Nuclear Scenario Involving Innovative Gas Cooled Reactors

Author:

Vezzoni Barbara1,Cerullo Nicola12,Forasassi Giuseppe1,Fridman Emil3,Lomonaco Guglielmo12ORCID,Romanello Vincenzo4ORCID,Shwageraus Eugene5ORCID

Affiliation:

1. Department of Mechanical, Nuclear and Production Engineering (DIMNP), University of Pisa, CIRTEN, Largo L. Lazzarino No. 2, 56126 Pisa, Italy

2. Energy and Environmental Conditioning Department (DIPTEM), University of Genova, Via all'Opera Pia n. 15/a, 16145 Genova, Italy

3. Accident Analysis Division (FWSS), Forschungszentrum Dresden-Rossendorf (FZD), P.O. Box 51 01 19, 01314 Dresden, Germany

4. Institute for Nuclear and Energy Technologies (IKET), Karlsruhe Institute for Tecnology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein, Leopoldshafen, Germany

5. Department of Nuclear Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel

Abstract

In order to guarantee a sustainable supply of future energy demand without compromising the environment, some actions for a substantial reduction of emissions are nowadays deeply analysed. One of them is the improvement of the nuclear energy use. In this framework, innovative gas-cooled reactors (both thermal and fast) seem to be very attractive from the electricity production point of view and for the potential industrial use along the high temperature processes (e.g., production by steam reforming or I-S process). This work focuses on a preliminary (and conservative) evaluation of possible advantages that a symbiotic cycle (EPR-PBMR-GCFR) could entail, with special regard to the reduction of the HLW inventory and the optimization of the exploitation of the fuel resources. The comparison between the symbiotic cycle chosen and the reference one (once-through scenario, i.e., EPR-SNF directly disposed) shows a reduction of the time needed to reach a fixed reference level from 170000 years to 1550 years (comparable with typical human times and for this reason more acceptable by the public opinion). In addition, this cycle enables to have a more efficient use of resources involved: the total electric energy produced becomes equal to 630 TWh/year (instead of only 530 TWh/year using only EPR) without consuming additional raw materials.

Publisher

Hindawi Limited

Subject

Nuclear Energy and Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3