Autophagy Promoted the Degradation of Mutant ATXN3 in Neurally Differentiated Spinocerebellar Ataxia-3 Human Induced Pluripotent Stem Cells

Author:

Ou Zhanhui1,Luo Min1,Niu Xiaohua1,Chen Yuchang1,Xie Yingjun1,He Wenyin1,Song Bing1,Xian Yexing1,Fan Di1,OuYang Shuming1,Sun Xiaofang1ORCID

Affiliation:

1. Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China

Abstract

Spinocerebellar ataxia-3 (SCA3) is the most common dominant inherited ataxia worldwide and is caused by an unstable CAG trinucleotide expansion mutation within the ATXN3 gene, resulting in an expanded polyglutamine tract within the ATXN3 protein. Many in vitro studies have examined the role of autophagy in neurodegenerative disorders, including SCA3, using transfection models with expression of pathogenic proteins in normal cells. In the current study, we aimed to develop an improved model for studying SCA3 in vitro using patient-derived cells. The patient-derived iPS cells presented a phenotype similar to that of human embryonic stem cells and could be differentiated into neurons. Additionally, these cells expressed abnormal ATXN3 protein without changes in the CAG repeat length during culture for at least 35 passages as iPS cells, up to 3 passages as neural stem cells, and after 4 weeks of neural differentiation. Furthermore, we demonstrated that neural differentiation in these iPS cells was accompanied by autophagy and that rapamycin promoted autophagy through degradation of mutant ATXN3 proteins in neurally differentiated spinocerebellar ataxia-3 human induced pluripotent stem cells (p<0.05). In conclusion, patient-derived iPS cells are a good model for studying the mechanisms of SCA3 and may provide a tool for drug discovery in vitro.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3