A Design and Optimization Methodology for Liquid Metal Fast Reactors

Author:

Al-Dawood Khaldoon1ORCID,Palmtag Scott1ORCID

Affiliation:

1. North Carolina State University, USA

Abstract

A liquid metal fast reactor (LMFR) design and optimization methodology (DOM) has been developed. The methodology effectively explores a search space by initially sampling the search space, excluding invalid design samples prior to performing expensive multiphysics analysis, and then performing local searches of the design space. The design samples are evaluated using the multiphysics capabilities of the LUPINE LMFR simulation suite. Two studies have been performed to demonstrate DOM. First, the Westinghouse long-life core lead fast reactor (WLFR) is optimized. This reactor is 950 MW th and fueled with uranium nitride (UN) fuel which has a natural nitrogen isotopic abundance. The objective of the optimization is the reduction of the levelized fuel cycle cost (LFCC) while complying with the design constraints. Considering the challenges associated with using natural nitrogen in nitride fuel, a second study was performed to design a competitive 15N-enriched UN-fueled long-life core LFR. Based on this design, the cost of the 15N enrichment process necessary to achieve a competitive LFCC was calculated.

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3