PF-ViT: Parallel and Fast Vision Transformer for Offline Handwritten Chinese Character Recognition

Author:

Dan Yongping1ORCID,Zhu Zongnan1,Jin Weishou1,Li Zhuo1

Affiliation:

1. School of Electronic Information, Zhongyuan University of Technology, Zhengzhou 450007, Henan, China

Abstract

Recently, Vision Transformer (ViT) has been widely used in the field of image recognition. Unfortunately, the ViT model repeatedly stacks 12-layer encoders, resulting in a large number of model computations, many parameters, and slow training speed, making it difficult to deploy on mobile devices. In order to reduce the computational complexity of the model and improve the training speed, a parallel and fast Vision Transformer method for offline handwritten Chinese character recognition is proposed. The method adds parallel branches of the encoder module to the structure of the Vision Transformer model. Parallel modes include two-way parallel, four-way parallel, and seven-way parallel. The original picture is fed to the encoder module after flattening and linear embedding processing operations. The core step in the encoder is the multihead attention mechanism. Multihead self-attention can learn the interdependence between image sequence blocks. In addition, the use of data expansion strategies increases the diversity of data. In the two-way parallel experiment, when the model is 98.1% accurate on the dataset, the number of parameters and the number of FLOPs are 43.11 million and 4.32 G, respectively. Compared with the ViT model, whose parameters and FLOPs are 86 million and 16.8 G, respectively, the two-way parallel model has a 50.1% decrease in parameters and a 34.6% decrease in FLOPs. This method has been demonstrated to effectively reduce the computational complexity of the model while indirectly improving image recognition speed.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optical Character Recognition Using Optimized Convolutional Networks*;2023 Eighth International Conference on Fog and Mobile Edge Computing (FMEC);2023-09-18

2. LW-ViT: The Lightweight Vision Transformer Model Applied in Offline Handwritten Chinese Character Recognition;Electronics;2023-04-03

3. Particle Swarm Optimization-Based Convolutional Neural Network for Handwritten Chinese Character Recognition;Journal of Advanced Computational Intelligence and Intelligent Informatics;2023-03-20

4. A novel multilevel stacked SqueezeNet model for handwritten Chinese character recognition;Computer Science and Information Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3