Affiliation:
1. School of Information and Computer Engineering, Northeast Forestry University, Harbin 150040, China
Abstract
Short text similarity computation plays an important role in various natural language processing tasks. Siamese neural networks are widely used in short text similarity calculation. However, due to the complexity of syntax and the correlation between words, siamese networks alone cannot achieve satisfactory results. Many studies show that the use of an attention mechanism will improve the impact of key features that can be utilized to measure sentence similarity. In this paper, a similarity calculation method is proposed which combines semantics and a headword attention mechanism. First, a BiGRU model is utilized to extract contextual information. After obtaining the headword set, the semantically enhanced representations of the two sentences are obtained through an attention mechanism and character splicing. Finally, we use a one-dimensional convolutional neural network to fuse the word embedding information with the contextual information. The experimental results on the ATEC and MSRP datasets show that the recall and F1 values of the proposed model are significantly improved through the introduction of the headword attention mechanism.
Funder
The Fundamental Research Funds for Central Universities
Subject
Computer Science Applications,Software
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献