Affiliation:
1. Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
2. School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 97048, Taiwan
3. Department of Mathematics, National Central University, Jhongli District, Taoyuan City 320317, Taiwan
Abstract
Tongue diagnosis, a noninvasive examination, is an essential step for syndrome differentiation and treatment in traditional Chinese medicine (TCM). Sublingual vein (SV) is examined to determine the presence of blood stasis and blood stasis syndrome. Many studies have shown that the degree of SV stasis positively correlates with disease severity. However, the diagnoses of SV examination are often subjective because they are influenced by factors such as physicians’ experience and color perception, resulting in different interpretations. Therefore, objective and scientific diagnostic approaches are required to determine the severity of sublingual varices. This study aims at developing a computer-assisted system based on machine learning (ML) techniques for diagnosing the severity of sublingual varicose veins. We conducted a comparative study of the performance of several supervised ML models, including the support vendor machine, K-neighbor, decision tree, linear regression, and Ridge classifier and their variants. The main task was to differentiate sublingual varices into mild and severe by using images of patients’ SVs. To improve diagnostic accuracy and to accelerate the training process, we proposed using two model reduction techniques, namely, the principal component analysis in conjunction with the slice inverse regression and the convolution neural network (CNN), to extract valuable features during the preprocessing of data. Our results showed that these two extraction methods can reduce the training time for the ML methods, and the Ridge-CNN method can achieve an accuracy rate as high as 87.5%, which is similar to that of experienced TCM physicians. This computer-aided tool can be used for reference clinical diagnosis. Furthermore, it can be employed by junior physicians to learn and to use in clinical settings.
Subject
Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献