Self-Organization of Polymeric Fluids in Strong Stress Fields

Author:

Semakov A. V.1,Kulichikhin V. G.1,Malkin A. Y.1

Affiliation:

1. Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninskii Prospect, Moscow 119991, Russia

Abstract

Analysis of literature data and our own experimental observations have led to the conclusion that, at high deformation rates, viscoelastic liquids come to behave as rubbery materials, with strong domination by elastic deformations over flow. This can be regarded as a deformation-induced fluid-to-rubbery transition. This transition is accompanied by elastic instability, which can lead to the formation of regular structures. So, a general explanation for these effects requires the treatment of viscoelastic liquids beyond critical deformation rates as rubbery media. Behaviouristic modeling of their behaviour is based on a new concept, which considers the medium as consisting of discrete elastic elements. Such a type of modeling introduces a set of discrete rotators settled on a lattice with two modes of elastic interaction. The first of these is their transformation from spherical to ellipsoidal shapes and orientation in an external field. The second is elastic collisions between rotators. Computer calculations have demonstrated that this discrete model correctly describes the observed structural effects, eventually resulting in a “chaos-to-order” transformation. These predictions correspond to real-world experimental data obtained under different modes of deformation. We presume that the developed concept can play a central role in understanding strong nonlinear effects in the rheology of viscoelastic liquids.

Funder

Russian Science Foundation

Publisher

Hindawi Limited

Subject

Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3