Affiliation:
1. Department of Health Management Center, The First Affiliated Hospital of Chongqing Medical University, China
2. Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, China
Abstract
Background. The mechanism of atypical hyperplasia of the ovarian epithelium and ectopic endometrium caused by iron overload remains unclear. Accordingly, we investigated possible effects on the human ovarian ectopic endometrium and ovarian epithelium by producing a high-iron environment with rat ovaries. Objective. Human ovarian ectopic endometrium with atypical hyperplasia was collected, and the correlation between transferrin receptor GPR30 and Pi3K protein expression was studied by immunohistochemistry staining. Twenty SPF Sprague–Dawley female rats were microinjected with iron into one side of the ovary once a month, and the other ovary was used as the control. After 10 months of microinjection, the iron histological analysis was examined by Prussian blue staining, and ovarian endometrium morphology was assessed by HE staining. Abnormal lesion changes were measured by Pi3K staining. Evaluation of GPR30 was performed using reverse transcription PCR (RT-PCR) and western blotting, and the interrelationship between GPR30 and Pi3K was also assayed. Results. GPR30 was significantly increased and correlated with the transferrin receptor and Pi3K in atypical human ovarian ectopic endometrium. Iron overload was confirmed in the 20 microinjected ovary cortexes, epithelial hyperplasia was observed in 12 ovaries, and papillary atypical hyperplasia was noted in eight ovaries. The RNA and protein levels of GPR30 were significantly increased in atypical hyperplasia compared to hyperplasia tissue samples. A positive relationship between GPR30 and Pi3K was found (
). Conclusion. The results suggest that persistent iron exposure may be a potential stimulus for ovarian endometriosis with atypical changes, and the abnormal increase in the new estrogen receptor GPR30 is closely related to this process.
Funder
National Natural Science Foundation of China
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献