The Molecular Effects of SGLT2i Empagliflozin on the Autophagy Pathway in Diabetes Mellitus Type 2 and Its Complications

Author:

Saad Ranin1,Tadmor Hagar1,Ertracht Offir2,Nakhoul Nakhoul3,Nakhoul Farid24ORCID,Evgeny Farber1,Atar Shaul245

Affiliation:

1. Diabetes & Metabolism Lab, Baruch Padeh Poriya Medical Center, Israel

2. Cardiovascular Laboratory, Medical Research Institute, Galilee Medical Center, Nahariya, Israel

3. The Ophthalmology, Israel

4. Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel

5. The Cardiology Department, Galilee Medical Center, Nahariya, Israel

Abstract

Background. Type 2 diabetes mellitus (T2DM), especially hyperglycemia, is associated with increased glucose cell toxicity and oxidative stress that can lead to irreversible damage in the kidney such as diabetic nephropathy (DN). Autophagy plays a key role in the degradation of damaged intracellular proteins in order to maintain intracellular homeostasis and cell integrity. The disturbance of autophagy is involved in the pathogenesis of diabetic nephropathy. We aim to investigate the molecular effect of sodium-glucose transporter 2 inhibitor (SGLT2i) on the expression of ATG5 and its downstream collaborator LC3-II in diabetic nice model. Material and Methods. We used eight weeks old male mice: twenty C57BL/6 wild type (C57BL/6), twenty BTBR ob/ob (DM), and twenty BTBR ob/ob that were treated with empagliflozin (DM+EMPA), FDA approved SGLT2i. Lysate from murine renal cortex was analyzed by Western blot and immunohistochemistry. ATG5, LC3B, and fibronectin expression were analyzed in murine kidney tissues. All mice were sacrificed 13 weeks after the beginning of the experiment. Results. Histological and Western blot analyses reveal decrease ATG5, LC3-II, and fibronectin levels at renal specimens taken from DM mice. EMPA treatment reduced T2DM mice body weight and blood glucose and increased urine glucose. Further, it upregulated all of the abovementioned proteins. Conclusions. Hyperglycemia reduces LC3-II and ATG5 protein levels which contribute to deficiencies in the autophagy process, with development and progression of DN. SGLT2i significantly reduces progression of DN and onset of end-stage renal disease in T2DM patients, probably through its effect on autophagy.

Funder

Ministry of Development of the Negev and the Galilee

Publisher

Hindawi Limited

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3