Extreme Gradient Boosting Regressor Solution for Defy in Drilling of Materials

Author:

Elango Sangeetha1ORCID,Natarajan Elango2ORCID,Varadaraju Kaviarasan3ORCID,Abraham Gnanamuthu Ezra Morris1ORCID,Durairaj R.1ORCID,Mohanraj Karthikeyan4,Osman M. A.5ORCID

Affiliation:

1. Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman (UTAR), Sungai Long, Malaysia

2. Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia

3. Mechanical Engineering, Sona College of Technology, Salem, Tamilnadu, India

4. PACE Enterprise Pte Ltd., 20A Tg Pagar Road, Singapore

5. Sudan University of Science and Technology, Khartoum, Sudan

Abstract

Drilling is a quite common operation being performed in the manufacturing of components. Instrumental response in drilling is geometrical accuracy and surface integrity of the drilled parts. For the application where geometrical tolerance is very small, an operation is to be carried out very carefully. If not, rejection of drilled samples will be higher and consequently production loss will be higher. The use of prediction model in this scenario is much more appropriate and cost-effective. This research aimed to apply extreme gradient boosting (XGBoost) regressor to develop a drilling prediction model. Drilling experiments were conducted after developing design of experiments with twenty-seven unique sets. Experimental data analysis was then carried out on experimental data sets that have features such as speed, feed, angle, hole length, and surface roughness. After correlation analysis, the k-fold cross validation method was applied for parameterisation. Hyperparameters estimated from the k-fold cross validation were then applied to train and test the XGBoost regressor-based machine learning (ML) model. It is concluded from the model evaluation metric (R2) that the XGBoost regressor model has resulted 0.89 before tuning and 0.94 after tuning of the model, which is higher than the polynomial regressor and support vector regressor.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3