Fault Detection Filter Design and Optimization for Switched Systems with All Modes Unstable

Author:

Huang Hanqiao1,Cheng Haoyu1ORCID,Song Ruijia2,Sun Gonghao13,Fang Yangwang1,Huang Guan4ORCID

Affiliation:

1. Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an, China

2. School of Astronautics, Northwestern Polytechnical University, Xi’an, China

3. Shanghai Electro-Mechanical Engineering Institute, Shanghai, China

4. China Electronics Standardization Institute, Beijing, China

Abstract

This problem of intelligent switched fault detection filter design is investigated in this article. Firstly, the mode-dependent average dwell time (MDADT) method is applied to generate the time-dependent switching signal for switched systems with all subsystems unstable. Afterwards, the switched fault detection filter is proposed for the generation of residual signal, which consists of dynamics-based filter and learning-based filter. The MDADT method and multiple Lyapunov function (MLF) method are employed to guarantee the stability and prescribed attenuation performance. The parameters of dynamics-based filter are given by solving a series of linear matrix inequalities. To improve the transient performance, the deep reinforcement learning is introduced to design learning-based filter in the framework of actor-critic. The output of learning-based filter can be viewed as uncertainties of dynamics-based filter. The deep deterministic policy gradient algorithm and nonfragile control are adopted to guarantee the stability of algorithm and compensate the external disturbance. Finally, simulation results are given to illustrate the effectiveness of the method in the paper.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3