Block Cipher’s Substitution Box Generation Based on Natural Randomness in Underwater Acoustics and Knight’s Tour Chain

Author:

Khan Muhammad Fahad12ORCID,Saleem Khalid1ORCID,Shah Tariq3,Hazzazi Mohammad Mazyad4ORCID,Bahkali Ismail5,Shukla Piyush Kumar6

Affiliation:

1. Department of Computer Science, Quaid-i-Azam University, Islamabad, Pakistan

2. Department of Software Engineering, Foundation University Islamabad, Islamabad, Pakistan

3. Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan

4. Department of Mathematics, College of Science, King Khalid University, Abha, Saudi Arabia

5. Department of Information Sciences, King Abdulaziz University Jeddah, Jeddah 21589, Saudi Arabia

6. Department of Computer Science & Engineering, University Institute of Technology, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, Madhya Pradesh, India

Abstract

The protection of confidential information is a global issue, and block encryption algorithms are the most reliable option for securing data. The famous information theorist, Claude Shannon, has given two desirable characteristics that should exist in a strong cipher which are substitution and permutation in their fundamental research on “Communication Theory of Secrecy Systems.” block ciphers strictly follow the substitution and permutation principle in an iterative manner to generate a ciphertext. The actual strength of the block ciphers against several attacks is entirely based on its substitution characteristic, which is gained by using the substitution box (S-box). In the current literature, algebraic structure-based and chaos-based techniques are highly used for the construction of S-boxes because both these techniques have favourable features for S-box construction but also various attacks of these techniques have been identified including SAT solver, linear and differential attacks, Gröbner-based attacks, XSL attacks, interpolation attacks, XL-based attacks, finite precision effect, chaotic systems degradation, predictability, weak randomness, chaotic discontinuity, and limited control parameters. The main objective of this research is to design a novel technique for the dynamic generation of S-boxes that are safe against the cryptanalysis techniques of algebraic structure-based and chaos-based approaches. True randomness has been universally recognized as the ideal method for cipher primitives design because true random numbers are unpredictable, irreversible, and unreproducible. The biggest challenge we faced during this research was how can we generate the true random numbers and how can true random numbers utilized for strengthening the S-box construction technique. The basic concept of the proposed technique is the extraction of true random bits from underwater acoustic waves and to design a novel technique for the dynamic generation of S-boxes using the chain of knight’s tour. Rather than algebraic structure- and chaos-based techniques, our proposed technique depends on inevitable high-quality randomness which exists in underwater acoustics waves. The proposed method satisfies all standard evaluation tests of S-boxes construction and true random numbers generation. Two million bits have been analyzed using the NIST randomness test suite, and the results show that underwater sound waves are an impeccable entropy source for true randomness. Additionally, our dynamically generated S-boxes have better or equal strength, over the latest published S-boxes (2020 to 2021). According to our knowledge first time, this type of research has been conducted, in which natural randomness of underwater acoustic waves has been used for the construction of block cipher’s substitution box.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3