Affiliation:
1. Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
Abstract
While mechanotransductive signal is proven essential for tissue regeneration, it is critical to determine specific cellular responses to such mechanical signals and the underlying mechanism. Dynamic fluid flow induced by mechanical loading has been shown to have the potential to regulate bone adaptation and mitigate bone loss. Mechanotransduction pathways are of great interests in elucidating how mechanical signals produce such observed effects, including reduced bone loss, increased bone formation, and osteogenic cell differentiation. The objective of this review is to develop a molecular understanding of the mechanotransduction processes in tissue regeneration, which may provide new insights into bone physiology. We discussed the potential for mechanical loading to induce dynamic bone fluid flow, regulation of bone adaptation, and optimization of stimulation parameters in various loading regimens. The potential for mechanical loading to regulate microcirculation is also discussed. Particularly, attention is allotted to the potential cellular and molecular pathways in response to loading, including osteocytes associated with Wnt signaling, elevation of marrow stem cells, and suppression of adipotic cells, as well as the roles of LRP5 and microRNA. These data and discussions highlight the complex yet highly coordinated process of mechanotransduction in bone tissue regeneration.
Funder
National Institutes of Health
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献