Integrated Optimization on Energy Saving and Quality of Service of Urban Rail Transit System

Author:

Li Wenxin1ORCID,Peng Qiyuan12ORCID,Wen Chao12ORCID,Li Shengdong1,Yan Xu1,Xu Xinyue3ORCID

Affiliation:

1. School of Transportation & Logistics, Southwest Jiaotong University, Chengdu 610031, China

2. National United Engineering Laboratory of Integrated and Intelligent Transportation, Southwest Jiaotong University, Chengdu 610031, China

3. State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China

Abstract

Optimizing to increase the utilization ratio of regenerative braking energy reduces energy consumption, and can be done without increasing the deviation of train running time in one circle. The latter entails that the train timetable is upheld, which guarantees that the demand for passenger transport services is met and the quality of services in the urban rail transit system is maintained. This study proposes a multi-objective optimization model for urban railways with timetable optimization to minimize the total energy consumption of trains while maximizing the quality of service. To this end, we apply the principles and ideas of calculus to reduce the power of the velocity in the train energy consumption model. This greatly simplifies the complexity of the optimization model. Then, considering the conflicting requirements of decision-makers, weight factors are added to the objective functions to reflect decision-makers’ preferences for energy-saving and the quality of service. We adopt the nondominated sorting genetic algorithm-II (NSGA-II) to solve the proposed model. A practical case study of the Yizhuang urban railway line in Beijing is conducted to verify the effectiveness of the proposed model and evaluate the advantages of the optimal energy saving timetable (OEST) in comparison to the optimal quality of service timetable (OQOST). The results showed that the OEST reduced total energy consumption by 8.72% but increased the deviation of trains running time in one circle by 728 s. The total energy consumption was reduced by 6.09%, but there was no increase in the deviation of train running time in one circle with the OQOST.

Funder

National Key R&D Program

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3