Kinetics and Isotherm Studies for Adsorption of Gentian Violet Dye from Aqueous Solutions Using Synthesized Hydroxyapatite

Author:

Ali Dalia A.1ORCID,Saad Fatma A.1,Elsawy Hoda A.1

Affiliation:

1. Department of Chemical Engineering, The British University in Egypt, El Shorouk City 11837, Egypt

Abstract

Water is the most important resource for life, but it has been greatly exhausted over the past century as a result of the human population and environmentally harmful activities. The excessive quantity of dyes exists in the wastewater produced from the textile industries which is the main reason for serious human health and environmental problems. There are many dye removal techniques, and the most promising one is the adsorption technique. The novelty of this research is using unmodified synthesized hydroxyapatite (HAp) as an adsorbent for the removal of gentian violet (GV) dye from aqueous solutions as there are no sufficient data in the literature about using it in the adsorption of GV dye from aqueous solutions. Unmodified HAp was synthesized by a combined precipitation microwave method. The prepared adsorbent was characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and zeta potential analyses. The kinetic study showed that the pseudo-second-order (PSO) model was the best fitted model with the experimental data. Analysis of adsorption isotherms using different models showed that this adsorption system was better described by the Halsey isotherm with a maximum adsorption capacity (qmax)  of 1.035 mg/g. The effects of experimental factors such as initial solution pH, initial dye concentration, adsorbent dose, and contact time were studied during the investigation of GV dye removal efficiency. The experimental results indicated that the maximum adsorption efficiency (99.32%) of the GV dye using HAp adsorbent was achieved at the following conditions: contact time = 90 min, pH = 12, initial GV dye concentration = 3 mg/L, and adsorbent dose = 1 g/L. The adsorption mechanism of the GV dye using HAp might be explained by the electrostatic interaction between the negatively charged surface of the HAp and the positively charged group of the GV dye. Thermodynamics study was performed on the adsorption process of GV dye from aqueous solutions using the synthesized HAp which revealed that this process was endothermic and spontaneous due to positive values of ΔH and ΔS and negative values of ΔG.

Publisher

Hindawi Limited

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3