Affiliation:
1. Housing and Building Research Center (HBRC), Sanitary and Environmental Institute, Dokki, Giza 12613, Egypt
2. Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
3. Cairo University Centre for Hazard Mitigation and Environmental Studies and Research CHMESR, Cairo University, Giza 12613, Egypt
4. Water Pollution Research Department, National Research Centre, Dokki, Cairo, Egypt
Abstract
This study’s goal was to learn more about how agrowaste plants tolerate, absorb, and accumulate a number of metals that are of relevance to the environment. Adsorption of lead (Pb), chromium (Cr), selenium (Se), copper (Cu), and zinc (Zn) ions from synthetic aqueous solutions and wastewater using natural waste residues (NWRs) such as moringa, Lupinus, sugarcane straw, and tea residue was evaluated. The adsorbents used for this study were prepared by washing, drying, and grinding. Fourier-transform infrared (FT-IR) spectroscopy and scanning electron microscope (SEM) analysis were used to characterize the adsorbents’ waste residues. The effect of different parameters such as pH, dose of adsorbents, and the initial concentration of heavy metals, as well as the adsorption isotherm parameters were studied. Moringa, Lupinus, sugarcane straw, or tea residue results were found to fit the Langmuir and Freundlich adsorption isotherms. The adsorption capacity reached 14.59, 16.10, 12.73, and 15.01 mg/g, respectively. The adsorption study’s overall results indicated the removal efficiency pattern as moringa > tea > Lupinus > sugarcane straw. At a dose of 0.5 g/L, the maximum removal percentages for lead, chromium, selenium, copper, and zinc ions were 90.2, 76.55, 70.55, 76.6, and 78.9, respectively. The materials might be regarded as efficient adsorbents for extracting the ions Pb, Cr, Se, Cu, and Zn from wastewater, according to the research.
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献