Coenzyme Q10 Sunscreen Prevents Progression of Ultraviolet-Induced Skin Damage in Mice

Author:

Wu Haiyou12ORCID,Zhong Zhangfeng1ORCID,Lin Sien13,Qiu Chuqun1,Xie Peitao2,Lv Simin4,Cui Liao1,Wu Tie14ORCID

Affiliation:

1. Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, China

2. Dongguan Institute for Food and Drug Control, Dongguan, Guangdong, China

3. Department of Orthopaedics and Traumatology and Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China

4. The Joint Center of Guangdong Medical University and Guangdong Runhe Biotechnology Company for Co-Enzyme Q10 Research, Dongguan, Guangdong, China

Abstract

The level of sun ultraviolet ray reaching the surface of the earth is increasing severely due to the rapid development of the society and environmental destruction. Excessive exposure to ultraviolet radiation causes skin damage and photoaging. Therefore, it is emerged to develop effective sunscreen to prevent ultraviolet-induced skin damage. This study was aimed at investigating the effects of Coenzyme Q10 (CoQ10) sunscreen on the prevention of ultraviolet B radiation- (UVB-) induced mouse skin damage. Three-month-old female mice were used, and they were randomly divided into four groups: control, model, CoQ10, and titanium dioxide (TiO2; positive control) groups. Our results showed that body weight, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities, and DNA (cytosine-5)-methyltransferase 1 (DNMT1) protein expression were significantly decreased, while malondialdehyde (MDA) activity and metalloproteinase-1 (MMP-1) level were increased in UVB-treated mice. Besides, the stratum corneum was shed from the skin surface in the model group compared with the control group. In contrast, CoQ10 sunscreen prevented from UVB-induced skin damage, as well as reversing SOD, GSH-Px, and MDA activities, and MMP-1 and DNMT1 levels. Taken together, the current study provided further evidence on the prevention of UVB-induced skin damage by CoQ10 and its underlying mechanisms.

Funder

Joint Center of Guangdong Medical University and Guangdong Runhe Biotechnology Company for Co-Enzyme Q10 Research

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3